Part Number Hot Search : 
3EZ68D5 TPU207 VN13C 1N991B FR103G SC261 NX9548 S2018
Product Description
Full Text Search
 

To Download B45196-P2685-M0106 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  contents 5 overview of types 9 chip capacitors 11 general technical information 43 quality assurance 61 taping, packing and weights 83 subject index 86 symbols and terms 88 measuring and test conditions 75 soldering conditions 76
new lab assortments in film capacitors scs ?dependable, fast and competent five at a stroke to save you the trouble of inquiring for individual ratings to put into your design, there are now five practical sets of film capacitors: t lead spacing 5: 525 types, 50 to 400 v, 1 nf to 3.3 ? t silvercaps: the lowest-cost models, low in volume, 63 to 400 v, 1 nf to 10 ? t mkps in wound technology: for rf applications, 250 to 2000 v, 1.5 nf to 0.68 ? t mkps in stacked-film tech- nology: 300 types, 160 to 1000 v, 1.5 nf to 1 ? t interference suppression: 150 types with a wide choice of ratings for different applications ? x2 with small dimensions, safe-x for maximum security against active flammability (x2) and y for suppressing common- mode interference (y2) siemens matsushita components components + s m sbs-15.4 01.09.1996 17:58 uhr seite 2
tantalum electrolytic capacitors
ferrites and inductors in modern office communications the little things that do so much in the multimedia age, ferrites and inductors often play a key role. in the switch-mode power supplies of pcs etd cores ensure interfe- rence-free transmission of power. ring and e cores in energy-saving lamps provide pleasant lighting. interface transformers in isdn systems satisfy the high demands of ccitt standards. and ultra-flat planar transformers supply units and installations with the necessary power. for application-specific products and inductor design you can count on the support of our i.f.c. know-how center, right from the initial engineering phase. siemens matsushita components components + s m scs ?dependable, fast and competent sbs-layout ferrite 01.09.1996 18:00 uhr seite 2
siemens matsushita components 5 overview of types 9 chip capacitors 11 g en er a l te ch ni ca l i nf or ma ti o n 1 ba s i c co ns tr u c tio n 43 2 polarity 44 3 standards 44 4 voltages 45 4.1 rated voltage 45 4.2 maximum continuous voltage 45 4.3 operating voltage 46 4.4 surge voltage 46 4.5 polarity reversal voltage (incorrect polarity) 47 4.6 series back-to-back connection 47 4.7 inherent voltage 47 4.8 recharging 47 5 capacitance 48 5.1 rated capacitance 48 5.2 capacitance tolerance 48 5.3 temperature dependence of the capacitance 48 5.4 frequency dependence of the capacitance 49 5.5 charge-discharge proof 49 6 impedance / equivalent series resistance ( esr )50 7 ac power dissipation 52 7.1 superimposed alternating voltage for capacitors with solid electrolyte 52 7.2 maximum permissible ripple current and alternating voltage loads 52 8 dissipation factor 54 9 leakage current 55 9.1 temperature and voltage dependence of the leakage current 55 9.2 time dependence of the leakage current 56 9.3 leakage current measurement 56 9.4 leakage current behavior after storage without applied voltage 57 10 resistance to climatic stress 57 10.1 temperature range 57 10.2 minimum permissible operating temperature t min (lower category temperature) 57 10.3 maximum permissible operating temperature t max (upper category temperature) 57 10.4 damp heat conditions 57 10.5 iec climatic category 58 10.6 storage and transportation temperatures 58 11 notes on mounting 58 11.1 cleaning agents 58 contents
6 siemens matsushita components 12 standard barcode label 58 13 packing 59 14 end of use and disposal 60 15 structure of the ordering code (part number) 60 quality assurance 61 1 general 61 1.1 total quality management and zero defect concept 62 1.2 quality assurance system 63 2 quality assurance procedure 64 2.1 material procurement 64 2.2 product quality assurance 64 2.3 final inspection 64 2.4 product monitoring 64 2.5 manufacturing and quality assurance procedures for chip capacitors 65 3 delivery quality 66 3.1 random sampling 66 3.2 classification of inoperatives / non-conformancies 66 3.3 aql figures 66 3.4 incoming goods inspection 66 4 service life 67 4.1 failure criteria 68 5 reliability 68 5.1 failure rate (long-term failure rate) 68 5.2 failure rate values 69 5.3 failure rate conversion factors 70 5.4 effect of the circuit resistance (series resistance) on the failure rate 71 5.5 example of how to calculate the failure rate 72 5.6 failure rate for b 45 194 72 6 supplementary information 73 7 handling of claims and complaints 74 measuring and test conditions 75 1 test conditions selected from iec 60-384-1 75 2 tests with more stringent conditions for b 45 196-p 75 soldering conditions 76 1 tests 76 2 recommended solder pad layouts 77 3 recommended soldering temperature profiles 78 4 recommended soldering temperature profiles for b 45 194 80 contents
siemens matsushita components 7 taping, packing and weights 83 1 taping 83 2 packing 84 3 packing units and weights 84 subject index 86 symbols and terms 88 contents
scs ?dependable, fast and competent siemens filters from stock siemens matsushita components components + s m ready, steady, go scs has 100,000 sifi filters in stock, ready to go as soon as your order arrives. we offer a big selection through all the many variants, ie building-block system, different attenuation characteristics and packages, various kinds of leads and current ratings from 1 through 20 a.
siemens matsushita components 9 type series rated voltage v r vdc rated capacitance c r m f features page chip capacitors 11 b 45 194 4 ,3 20 0,10 3,3 ultra-small design case size z = ? 0805 case size p = ? 1206 16 b 45 196-e b 45 198-e 4 ,3 50 0,10 100 standard version iecq/cecc-approved 24 b 45 196-h b 45 198-h 4 ,3 50 0,15 470 highcap very high volumetric efficiency 27 b 45 196-p b 45 198-p 4 ,3 50 0,10 150 performance extremely high reliability, iecq/cecc-approved (150 c version) 31 b 45 197 b 45 198-r 6,3 50 3,3 330 speedpower low esr , for power supplies with very high clock frequencies 35 overview of types
scs ?dependable, fast and competent european technology center for ceramic components siemens matsushita components components + s m there when you need us this is an organization thats proven its worth. because it stands for more customer proximity and thus better service. here you get infor- mation straight from the source, implementation of the latest tech- nologies and products that match the market. concentration of resources means that design engineers and production engineers are working side by side. and scs warehousing directly at the plant ensures fastest possible delivery.
siemens matsushita components 11 page b 45 194 general specifications 12 overview of available types 15 technical data and ordering codes 16 characteristic curves 17 b 45 196, b 45 197, b 45 198 general specifications 18 overview of available types 22 technical data and ordering codes 24 characteristic curves 37 chip capacitors
12 siemens matsushita components construction l polar tantalum capacitors with solid electrolyte l flame-retardant plastic case (ul 94 v-0) l tinned terminals features l ultra-small design case size z = ? 0805 and p = ? 1206 (low profile) l high volumetric efficiency l excellent solderability l stable temperature and frequency characteristics l low leakage current, low dissipation factor l low self-inductance l high resistance to shock and vibration l suitable for use without series resistor applications l telecommunications (e.g. pagers, handies) l data processing (e.g. pcma cards) l medical engineering (e.g. hearing aids) soldering suitable for reflow soldering (ir and vapor phase) and wave soldering delivery mode taped and reeled in accordance with iec 286-3 ordering code structure b45194-a1225-m109 passive component tantalum capacitor series reel diameter 9 = 180 mm case size 80 = z, 10 = p capacitance tolerance m = 20 % voltage code 0 is omitted rated capacitance first two digits = significant figures third digit = exponent chip capacitors b 45 194
siemens matsushita components 13 any general information given in the second part of this data book (starting with page 43 ) only applies to b 45 194 if the b 45 194 series or its cases z and p are explicitly mentioned. please contact your nearest siemens office for passive components if you need further information. dimensional drawing specifications and characteristics in brief series b 45 194 overview of available types page 15 rated voltage v r (up to 85 ?c) 4 20 vdc rated capacitance c r tolerance 0,10 3,3 m f 20 % failure rate refer to page 72 leakage current (v r , 2 min, 20 ?c) 0,5 m a iec climatic category in accordance with iec 68-1 55/125/21 ( - 55/+125 ?c; 21 days damp heat test) case size dimensions in mm (inches) l 0,2 (,008) w 0,2 (,008) h max. w 2 0,1 ( ,004) p z 2,0 (,079) 1,25 (,049) 1,2 (,047) 0,9 (,035) 0,5 0,2 (,020 ,008) p 3,2 (,126) 1,6 (,062) 1,2 (,047) 1,2 (,047) 0,8 0,3 (,031 ,012) encapsulation: molded epoxy resin nife; surface sn60/pb40 slotted anode terminal for case size p marking positive pole marking b 45 194 !
14 siemens matsushita components marking example: 6,3 v; 1,5 m f in p case: je6 voltage: 6,3 v = j capacitance: 1,5 m f = 1,5 10 6 pf 1,5 = e 10 6 = 6 for case size z the code number for the multiplier is omitted. example : je voltage coding rated voltage 4 6,3 10 16 20 code letter g j a c d capacitance coding 1st digit (capacitance) code letter a e j n s w cap. value 1 1,5 2,2 3,3 4,7 1) 6,8 1) 2nd digit (multiplier) code number 5 6 multiplier 10 5 10 6 case size z case size p rated voltage (in coded form) capacitance (in coded form) positive pole (bar) positive pole (bar) capacitance (in coded form) rated voltage (in coded form) 1) cap. value 0,47 and 0,68 m f for case size z b 45 194
siemens matsushita components 15 overview of available types v r (vdc) up to 85 c 4,0 6,3 10 16 20 c r ( m f) 0,10 p 0,15 p 0,22 p 0,33 p 0,47 z p 0,68 z p p 1,0 z p p 1,5 z p p 2,2 z p p 3,3 p features ultra-small design low profile b 45 194
16 siemens matsushita components technical data and ordering codes for characteristic curves see page 17 capacitance tolerance: m = 20 % v r 1) up to 85?c (up to 125?c) vdc c r m f case size tan d max (20?c, 120 hz) i lk, max (20?c, v r , 2 min) m a ordering code 4,0 (2,5) 2,2 z 0,10 0,5 b45194-a225-m809 2,2 p 0,04 0,5 b45194-a225-m109 3,3 p 0,04 0,5 b45195-a335-m109 6,3 (4) 1,5 z 0,10 0,5 b45194-a1155-m809 1,5 p 0,04 0,5 b45194-a1155-m109 2,2 p 0,04 0,5 b45194-a1225-m109 10 (6,3) 1,0 z 0,10 0,5 b45194-a2105-m809 1,0 p 0,04 0,5 b45194-a2105-m109 1,5 p 0,04 0,5 b45194-a2155-m109 16 (10) 0,47 z 0,10 0,5 b45194-a3474-m809 0,68 z 0,10 0,5 b45194-a3684-m809 0,68 p 0,04 0,5 b45194-a3684-m109 1,0 p 0,04 0,5 b45194-a3105-m109 20 (13) 0,10 p 0,04 0,5 b45194-a4104-m109 0,15 p 0,04 0,5 b45194-a4154-m109 0,22 p 0,04 0,5 b45194-a4224-m109 0,33 p 0,04 0,5 b45194-a4334-m109 0,47 p 0,04 0,5 b45194-a4474-m109 0,68 p 0,04 0,5 b45194-a4684-m109 1) surge voltage v s = 1,3 v r b 45 194
siemens matsushita components 17 impedance z and equivalent series resistance esr versus frequency f typical behavior case size z impedance z and equivalent series resistance esr versus frequency f typical behavior case size p b 45 194
18 siemens matsushita components construction l polar tantalum capacitors with solid electrolyte l flame-retardant plastic case (ul 94 v-0) l optionally tinned or gold-plated terminals (gold-plated terminals for case size a upon request) features l high volumetric efficiency l excellent solderability l stable temperature and frequency characteristics l low leakage current, low dissipation factor l low self-inductance l high resistance to shock and vibration l suitable for use without series resistor applications l telecommunications (e.g. mobile phones, private branch exchanges) l data processing (e.g. laptops, main frames) l measuring and control engineering l automotive electronics l medical engineering l switch-mode power supplies with very high clock frequencies (300 khz) l dc/dc converters soldering suitable for reflow soldering (ir and vapor phase) and wave soldering delivery mode taped and reeled in accordance with iec 286-3 ordering code structure b45196-e1225- + 10 * passive component tantalum capacitor series 196 = tinned terminals 197 = tinned terminals 198 = gold-plated terminals reel diameter 9 = 180 mm, 6 = 330 mm case size 10 = a, 20 = b, 30 = c, 40 = d, 50 = e capacitance tolerance m = 20 %, k = 10 %, j = 5 % voltage code 0 is omitted rated capacitance first two digits = significant figures third digit = exponent chip capacitors b 45 196, b 45 197 b 45 198
siemens matsushita components 19 specifications and characteristics in brief series b 45 196-e standard b 45 196-h highcap b 45 196-p performance b 45 197 speedpower (low esr) overview of available types page 22 page 23 rated voltage v r (up to 85 ?c) 4 50 vdc 4 50 vdc 4 50 vdc 6,3 50 vdc rated capacitance c r tolerance 0,10 100 m f 10 %, 20 % 5% (on request) 0,15 470 m f 10 %, 20 % 5% (on request) 0,10 150 m f 10 %, 20 % 5% (on request) 3,3 330 m f 10 %, 20 % 5% (on request) failure rate at 40 ?c; v r , r s 3 3 w /v (1 fit = 1 . 10 -9 failures/h) c r v r 330 m fv c r v r > 330 m fv 3 fit 10 fit 8 fit 24 fit 0,8 fit 2,5 fit 8 fit 12 fit service life > 500 000 h > 500 000 h > 500 000 h > 500 000 h leakage current (v r , 5 min, 20 ?c) 10 na/ m c 10 na/ m c 10 na/ m c 10 na/ m c esr 100 600 m w detail specification (tinned terminals) iec-qc300801/ us0001 cecc30801-801 cecc30801-802 iec-qc300801/ us0001 cecc30801-801 cecc30801-805 quality approval iecq cecc iecq cecc iec climatic category in accordance with iec 68-1 55/125/56 ( - 55/+125 ?c; 56 days damp heat test) for types b 45 196-p, individual tests are carried out under more extreme conditions, supplementary to the tests specified by cecc. examples: damp heat 85 (+2) ?c, 85 ? 90% relative humidity rapid temperature change 100 cycles, C 55?c/+ 125 ?c, 30 min. surge voltage 10 4 charge cycles impulse test 10 6 cycles types b 45 196-p can be operated at temperatures up to 150 ?c. details for this operating condition must be agreed upon between supplier and customer. b 45 196, b 45 197 b 45 198
20 siemens matsushita components dimensional drawing case size dimensions in mm (inches) lwhl 2 typ. w 2 0,1 ( ,004) h 2 typ. p 0,3 (,012) a 3,2 0,2 (,126 ,008) 1,6 0,2 (,063 ,008) 1,6 0,2 (,063 ,008) 3,0 (,118) 1,2 (,047) 1,0 (,039) 0,8 (,031) b 3,5 0,2 (,138 ,008) 2,8 0,2 (,110 ,008) 1,9 0,2 (,075 ,008 ) 3,3 (,130) 2,2 (,087) 1,2 (,047) 0,8 (,031) c 6,0 0,3 (,236 ,012) 3,2 0,3 (,126 ,012) 2,5 0,3 (,098 ,012) 5,8 (,228) 2,2 (,087) 1,5 (,059) 1,3 (,051) d 7,3 0,3 (,287 ,012) 4,3 0,3 (,169 ,012) 2,8 0,3 (,110 ,012) 7,1 (,280) 2,4 (,094) 1,6 (,062) 1,3 (,051) e 7,3 0,3 (,287 ,012) 4,3 0,3 (,169 ,012) 4,1 0,3 (,157 ,012) 7,1 (,280) 2,4 (,094) 1,6 (,062) 1,3 (,051) encapsulation: molded epoxy resin nife; surface sn60/pb40 or sn90/pb10 or gold-plated a reduced slot length for case size a positive pole marking marking positive pole marking b 45 196, b 45 197 b 45 198
siemens matsushita components 21 marking voltage coding for case size a rated voltage 4 6,3 10 16 20 25 35 50 code letter g j a c d e v t capacitance coding 1st and 2nd digit capacitance in pf 3rd digit multiplier: 4 = 10 4 pf 5 = 10 5 pf 6 = 10 6 pf 7 = 10 7 pf date coding year month h = 1996 1 = january 7 = july in addition to the year and month of manufac- ture, the stamp includes another two figures which internally allow us an assignment to concrete production equipment. stamping of chips in case sizes a and b with date code is currently not possible for reasons of space. j = 1997 2 = february 8 = august k = 1998 3 = march 9 = september l = 1999 4 = april o = october m = 2000 5 = may n = november 6 = june d = december positive pole (bar) rated voltage (in coded form) capacitance (in coded form) manufacturers logo case size a case sizes c, d, e case size b manufacturers logo rated voltage, (not coded) v r = 6,3 v is abbreviated as 6. capacitance (in coded form) positive pole (bar) positive pole (bar) manufacturers logo internal code for production equipment date code capacitance (in coded form) rated voltage, (not coded) v r = 6,3 v is abbreviated as 6. b 45 196, b 45 197 b 45 198
22 siemens matsushita components overview of available types series b 45 196-e, tinned terminals b 45 198-e, gold-plated terminals 1) standard b 45 196-h, tinned terminals b 45 198-h, gold-plated terminals 1) highcap 2) page 24 27 v r (vdc) up to 85 c 4 6,3 10 16 20 25 35 50 4 6,3 10 16 20 25 35 50 c r ( m f) 0,10 a a 0,15 a b a 0,22 a b a 0,33 a b 0,47 a b c a b 0,68 a a b c a 1,0 a a b c a a 1,5 aa bcd aabc 2,2 aa bbcd aa b 3,3 aa bbccd aa ab 4,7 a b b c c d d a a a b ab c 6,8 bbccdd aaab ab c c e 10 bbcc dd aaabbc bc e 15 b c c d d a a b b c bc d 22 cc dd b abbcccde 33 c dd bbcccde d e 47 d d bcbc c d de e 68 dd ccd cd e 100 d c c d d de e 150 d d d e e 220 d d e e d 330 e e de 470 e e features standard version with iecq and cecc approval. particularly high volumetric efficiency. upon request 1) gold-plated terminals available for case sizes b, c, d, e (a upon request), currently without cecc approval 2) additional ratings upon request b 45 196, b 45 197 b 45 198 d
siemens matsushita components 23 overview of available types series b 45 196-p , tinned terminals b 45 198-p, gold-plated terminals 1) performance 2) b 45 197-a, tinned terminals b 45 198-r, gold-plated terminals 1) speedpower (low esr) 2) page 31 35 v r (vdc) up to 85 c 4 6,3 10 16 20 25 35 50 6,3 10 16 20 25 35 50 c r ( m f) 0,10 a a 0,15 a b 0,22 a b 0,33 a b 0,47 a b c 0,68 a a b c 1,0 a a a b c 1,5 aaabcd 2,2 aaabbcd 3,3 aaabbccd c 4,7 aabbccdd c d d 6,8 a b b c c c d c d e e 10 b b b c c c c d d c c d e 15 bcccdd c c dde 22 ccccddd c c ddee 33 ccddd c ddee 47 c c d d d d d e 68 ddd d d e e 100 d d d d d e e 150 d e e 220 e e 330 e e features outstanding reliability, e. g. for automotive electronics and medical applications, iecq and cecc approval. low esr, for switch-mode power supplies with very high clock frequencies (e. g. telecom applications). 1) gold-plated terminals available for case sizes b, c, d, e (a upon request), currently without cecc approval 2) additional ratings upon request b 45 196, b 45 197 b 45 198
24 siemens matsushita components technical data and ordering codes for characteristic curves see page 37 / 38 ff v r up to 85?c (up to 125?c) vdc c r m f case size tan d max (20?c, 120 hz) i lk, max (20?c, v r , 5 min) m a z max (20?c, 100 khz) w ordering code 1) tinned terminals 4 (2,5) 3,3 a 0,06 0,5 9,0 b45196-e335-+10 * 4,7 a 0,06 0,5 7,0 b45196-e475-+10 * 10 b 0,06 0,5 4,5 b45196-e106-+20 * 15 b 0,06 0,6 3,5 b45196-e156-+20 * 22 c 0,06 0,9 2,4 b45196-e226-+30 * 33 c 0,06 1,3 2,0 b45196-e336-+30 * 68 d 0,06 2,7 1,1 b45196-e686-+40 * 100 d 0,08 4,0 0,8 b45196-e107-+40 * 6,3 (4) 2,2 a 0,06 0,5 10 b45196-e1225-+10 * 3,3 a 0,06 0,5 7,0 b45196-e1335-+10 * 6,8 b 0,06 0,5 4,5 b45196-e1685-+20 * 10 b 0,06 0,6 3,5 b45196-e1106-+20 * 15 c 0,06 1,0 2,4 b45196-e1156-+30 * 22 c 0,06 1,4 2,0 b45196-e1226-+30 * 47 d 0,06 3,0 1,1 b45196-e1476-+40 * 68 d 0,06 4,3 0,8 b45196-e1686-+40 * 10 (6,3) 1,5 a 0,06 0,5 10 b45196-e2155-+10 * 2,2 a 0,06 0,5 7,0 b45196-e2225-+10 * 4,7 b 0,06 0,5 4,5 b45196-e2475-+20 * 6,8 b 0,06 0,7 3,5 b45196-e2685-+20 * 10 c 0,06 1,0 2,4 b45196-e2106-+30 * 15 c 0,06 1,5 2,0 b45196-e2156-+30 * 33 d 0,06 3,3 1,1 b45196-e2336-+40 * 47 d 0,06 4,7 0,8 b45196-e2476-+40 * 16 (10) 1,0 a 0,04 0,5 10 b45196-e3105-+10 * 1,5 a 0,06 0,5 8,0 b45196-e3155-+10 * 3,3 b 0,06 0,6 5,0 b45196-e3335-+20 * 4,7 b 0,06 0,8 3,5 b45196-e3475-+20 * 6,8 c 0,06 1,1 2,4 b45196-e3685-+30 * 10 c 0,06 1,6 2,0 b45196-e3106-+30 * 22 d 0,06 3,6 1,1 b45196-e3226-+40 * 33 d 0,06 5,3 1,0 b45196-e3336-+40 * 1) replace 196 by 198 for gold-plated terminals + insert code letter for required capacitance tolerance: m = 20 %, k = 10 % (j = 5 % upon request) * insert code number for required reel diameter: 9 = 180 mm, 6 = 330 mm b 45 196-e
siemens matsushita components 25 20 (13) 0,68 a 0,04 0,5 12 b45196-e4684-+10 * 1,0 a 0,04 0,5 9,0 b45196-e4105-+10 * 2,2 b 0,06 0,5 6,0 b45196-e4225-+20 * 3,3 b 0,06 0,7 4,5 b45196-e4335-+20 * 4,7 c 0,06 1,0 2,4 b45196-e4475-+30 * 6,8 c 0,06 1,4 2,0 b45196-e4685-+30 * 15 d 0,06 3,0 1,2 b45196-e4156-+40 * 22 d 0,06 4,4 1,0 b45196-e4226-+40 * 25 (16) 0,47 a 0,04 0,5 13 b45196-e5474-+10 * 0,68 a 0,04 0,5 10 b45196-e5684-+10 * 1,5 b 0,06 0,5 7,0 b45196-e5155-+20 * 2,2 b 0,06 0,6 5,0 b45196-e5225-+20 * 3,3 c 0,06 0,9 2,8 b45196-e5335-+30 * 4,7 c 0,06 1,2 2,3 b45196-e5475-+30 * 6,8 d 0,06 1,7 1,8 b45196-e5685-+40 * 10 d 0,06 2,5 1,2 b45196-e5106-+40 * 15 d 0,06 3,8 1,0 b45196-e5156-+40 * 35 (23) 0,10 a 0,04 0,5 28 b45196-e6104-+10 * 0,15 a 0,04 0,5 23 b45196-e6154-+10 * 0,22 a 0,04 0,5 19 b45196-e6224-+10 * 0,33 a 0,04 0,5 15 b45196-e6334-+10 * 0,47 b 0,04 0,5 11 b45196-e6474-+20 * 0,68 b 0,04 0,5 8,0 b45196-e6684-+20 * 1,0 b 0,04 0,5 7,0 b45196-e6105-+20 * 1,5 c 0,06 0,6 4,8 b45196-e6155-+30 * 2,2 c 0,06 0,8 3,2 b45196-e6225-+30 * 3,3 c 0,06 1,2 2,4 b45196-e6335-+30 * 4,7 d 0,06 1,7 1,5 b45196-e6475-+40 * 6,8 d 0,06 2,4 1,2 b45196-e6685-+40 * 10 d 0,06 3,5 1,0 b45196-e6106-+40 * v r up to 85?c (up to 125?c) vdc c r m f case size tan d max (20?c, 120 hz) i lk, max (20?c, v r , 5 min) m a z max (20?c, 100 khz) w ordering code 1) tinned terminals 1) replace 196 by 198 for gold-plated terminals + insert code letter for required capacitance tolerance: m = 20 %, k = 10 % (j = 5 % upon request) * insert code number for required reel diameter: 9 = 180 mm, 6 = 330 mm b 45 196-e
26 siemens matsushita components 50 (33) 0,10 a 0,04 0,5 27 b45196-e7104-+10 * 0,15 b 0,04 0,5 22 b45196-e7154-+20 * 0,22 b 0,04 0,5 18 b45196-e7224-+20 * 0,33 b 0,04 0,5 14 b45196-e7334-+20 * 0,47 c 0,04 0,5 7,2 b45196-e7474-+30 * 0,68 c 0,04 0,5 6,4 b45196-e7684-+30 * 1,0 c 0,04 0,5 4,8 b45196-e7105-+30 * 1,5 d 0,06 0,8 4,0 b45196-e7155-+40 * 2,2 d 0,06 1,1 2,8 b45196-e7225-+40 * 3,3 d 0,06 1,7 1,6 b45196-e7335-+40 * 4,7 d 0,06 2,4 1,2 b45196-e7475-+40 * v r up to 85?c (up to 125?c) vdc c r m f case size tan d max (20?c, 120 hz) i lk, max (20?c, v r , 5 min) m a z max (20?c, 100 khz) w ordering code 1) tinned terminals 1) replace 196 by 198 for gold-plated terminals + insert code letter for required capacitance tolerance: m = 20 %, k = 10 % (j = 5 % upon request) * insert code number for required reel diameter: 9 = 180 mm, 6 = 330 mm b 45 196-e
siemens matsushita components 27 technical data and ordering codes for characteristic curve s see pag e 37 / 38 ff v r up to 8 5 ?c (up to 12 5 ?c) vdc c r m f case size ta n d max (2 0 ?c, 120 hz) i lk, max (2 0 ?c, v r , 5 min) m a z max (2 0 ?c, 100 khz) w ordering code 1) tinned terminals 4 (2,5) 6,8 a 0,06 0,5 6,0 b45196-h685-+10 * 10 a 0,06 0,5 4,5 b45196-h106-+10 * 15 a 0,06 0,6 4,0 b45196-h156-+10 * 22 2) a 0,06 0,9 3,5 b45196-h226-+10 * 22 b 0,06 0,9 3,0 b45196-h226-+20 * 33 b 0,06 1,3 2,5 b45196-h336-+20 * 47 b 0,06 1,9 2,3 b45196-h476-+20 * 47 c 0,06 1,9 1,6 b45196-h476-+30 * 68 c 0,06 2,7 1,5 b45196-h686-+30 * 100 c 0,08 4,0 1,4 b45196-h107-+30 * 150 d 0,08 6,0 0,8 b45196-h157-+40 * 220 d 0,08 8,8 0,8 b45196-h227-+40 * 330 e 0,08 13,2 0,8 b45196-h337-+50 * 470 e 0,08 18,8 0,6 b45196-h477-+50 * 6,3 (4) 4,7 a 0,06 0,5 5,5 b45196-h1475-+10 * 6,8 a 0,06 0,5 4,5 b45196-h1685-+10 * 10 a 0,06 0,6 4,0 b45196-h1106-+10 * 15 a 0,06 0,9 3,8 b45196-h1156-+10 * 15 b 0,06 0,9 3,0 b45196-h1156-+20 * 22 b 0,06 1,4 2,5 b45196-h1226-+20 * 33 b 0,06 2,1 2,2 b45196-h1336-+20 * 33 c 0,06 2,1 1,6 b45196-h1336-+30 * 47 b 0,06 3,0 2,0 b45196-h1476-+20 * 47 c 0,06 3,0 1,5 b45196-h1476-+30 * 68 c 0,06 4,3 1,4 b45196-h1686-+30 * 100 c 0,08 6,3 1,2 b45196-h1107-+30 * 100 d 0,08 6,3 0,8 b45196-h1107-+40 * 150 d 0,08 9,5 0,8 b45196-h1157-+40 * 220 d 0,08 13,9 0,8 b45196-h1227-+40 * 220 e 0,08 13,9 0,8 b45196-h1227-+50 * 330 d 0,08 20,8 0,8 b45196-h1337-+40 * 330 e 0,08 20,8 0,6 b45196-h1337-+50 * 470 e 0,08 29,6 0, 6 b45196-h1477-+50 * 1 ) replace 196 by 198 for gold-plated terminals + insert code letter for required capacitance tolerance: m = 20 %, k = 10 % (j = 5 % upon request) * insert code number for required reel diameter: 9 = 180 mm, 6 = 330 mm 2 ) upon request b 45 196-h
28 siemens matsushita components 10 (6,3) 3,3 a 0,06 0,5 5,5 b45196-h2335-+10 * 4,7 a 0,06 0,5 4,5 b45196-h2475-+10 * 6,8 a 0,06 0,7 4,0 b45196-h2685-+10 * 10 a 0,06 1,0 3,8 b45196-h2106-+10 * 10 b 0,06 1,0 3,0 b45196-h2106-+20 * 15 b 0,06 1,5 2,5 b45196-h2156-+20 * 22 b 0,06 2,2 2,3 b45196-h2226-+20 * 22 c 0,06 2,2 1,6 b45196-h2226-+30 * 33 c 0,06 3,0 1,5 b45196-h2336-+30 * 47 c 0,06 4,7 1,4 b45196-h2476-+30 * 68 2) c 0,06 6,8 1,2 b45196-h2686-+30 * 68 d 0,06 6,8 0,8 b45196-h2686-+40 * 100 d 0,08 10 0,8 b45196-h2107-+40 * 150 d 0,08 15 0,8 b45196-h2157-+40 * 150 e 0,08 15 0,8 b45196-h2157-+50 * 220 2) d 0,08 22 0,8 b45196-h2227-+40 * 220 e 0,08 22 0,6 b45196-h2227-+50 * 330 e 0,08 33 0,6 b45196-h2337-+50 * 16 (10) 2,2 a 0,06 0,5 6,5 b45196-h3225-+10 * 3,3 a 0,06 0,5 5,0 b45196-h3335-+10 * 4,7 a 0,06 0,8 4,0 b45196-h3475-+10 * 6,8 2) a 0,06 1,1 3,8 b45196-h3685-+10 * 6,8 b 0,06 1,1 3,0 b45196-h3685-+20 * 10 b 0,06 1,6 2,5 b45196-h3106-+20 * 15 2) b 0,06 2,4 2,3 b45196-h3156-+20 * 15 c 0,06 2,4 1,6 b45196-h3156-+30 * 22 c 0,06 3,5 1,5 b45196-h3226-+30 * 33 c 0,06 5,3 1,4 b45196-h3336-+30 * 47 d 0,06 7,5 0,8 b45196-h3476-+40 * 68 d 0,06 10,9 0,8 b45196-h3686-+40 * 100 2) d 0,08 16 0,8 b45196-h3107-+40 * 100 e 0,08 16 0,8 b45196-h3107-+50 * 150 2) e 0,08 24 0,6 b45196-h3157-+50 * v r up to 85?c (up to 125?c) vdc c r m f case size tan d max (20?c, 120 hz) i lk, max (20?c, v r , 5 min) m a z max (20?c, 100 khz) w ordering code 1) tinned terminals 1) replace 196 by 198 for gold-plated terminals + insert code letter for required capacitance tolerance: m = 20 %, k = 10 % (j = 5 % upon request) * insert code number for required reel diameter: 9 = 180 mm, 6 = 330 mm 2) upon request b 45 196-h
siemens matsushita components 29 20 (13) 1,5 a 0,06 0,5 8,0 b45196-h4155-+10 * 2,2 a 0,06 0,5 6,0 b45196-h4225-+10 * 3,3 2) a 0,06 0,7 4,0 b45196-h4335-+10 * 4,7 2) a 0,06 0,9 3,5 b45196-h4475-+10 * 4,7 b 0,06 0,9 3,0 b45196-h4475-+20 * 6,8 b 0,06 1,4 2,5 b45196-h4685-+20 * 10 2) b 0,06 2,0 2,3 b45196-h4106-+20 * 10 c 0,06 2,0 1,6 b45196-h4106-+30 * 15 c 0,06 3,0 1,5 b45196-h4156-+30 * 22 c 0,06 4,4 1,4 b45196-h4226-+30 * 33 d 0,06 6,6 0,8 b45196-h4336-+40 * 47 d 0,06 9,4 0,8 b45196-h4476-+40 * 47 e 0,06 9,4 0,8 b45196-h4476-+50 * 68 e 0,06 13,6 0,8 b45196-h4686-+50 * 100 2) e 0,08 20,0 0,8 b45196-h4107-+50 * 25 (16) 1,0 a 0,04 0,5 8,0 b45196-h5105-+10 * 1,5 a 0,06 0,5 7,0 b45196-h5155-+10 * 3,3 b 0,06 0,8 4,0 b45196-h5335-+20 * 4,7 b 0,06 1,2 3,2 b45196-h5475-+20 * 6,8 c 0,06 1,7 2,0 b45196-h5685-+30 * 10 c 0,06 2,5 1,6 b45196-h5106-+30 * 22 d 0,06 5,5 0,8 b45196-h5226-+40 * 33 2) d 0,06 8,3 0,8 b45196-h5336-+40 * 33 e 0,06 8,3 0,8 b45196-h5336-+50 * 47 2) e 0,06 11,7 0, 8 b45196-h5476-+50 * v r up to 8 5 ?c (up to 12 5 ?c) vdc c r m f case size ta n d max (2 0 ?c, 120 hz) i lk, max (2 0 ?c, v r , 5 min) m a z max (2 0 ?c, 100 khz) w ordering code 1) tinned terminals 1 ) replace 196 by 198 for gold-plated terminals + insert code letter for required capacitance tolerance: m = 20 %, k = 10 % (j = 5 % upon request) * insert code number for required reel diameter: 9 = 180 mm, 6 = 330 mm 2 ) upon request b 45 196-h
30 siemens matsushita components 1) replace 196 by 198 for gold-plated terminals + insert code letter for required capacitance tolerance: m = 20 %, k = 10 % (j = 5 % upon request) * insert code number for required reel diameter: 9 = 180 mm, 6 = 330 mm 2) upon request 35 (23) 0,47 a 0,04 0,5 11 b45196-h6474-+10 * 0,68 a 0,04 0,5 8,0 b45196-h6684-+10 * 1,0 a 0,04 0,5 7,0 b45196-h6105-+10 * 1,5 b 0,06 0,5 6,0 b45196-h6155-+20 * 2,2 b 0,06 0,8 4,0 b45196-h6225-+20 * 4,7 c 0,06 1,6 2,0 b45196-h6475-+30 * 6,8 c 0,06 2,4 1,8 b45196-h6685-+30 * 15 d 0,06 5,3 0,8 b45196-h6156-+40 * 22 e 0,06 7,7 0,8 b45196-h6226-+50 * 33 2) e 0,06 11,6 0,8 b45196-h6336-+50 * 50 (33) 0,15 a 0,04 0,5 22 b45196-h7154-+10 * 0,22 a 0,04 0,5 18 b45196-h7224-+10 * 0,47 b 0,04 0,5 9,0 b45196-h7474-+20 * 1,5 c 0,06 0,8 4,4 b45196-h7155-+30 * 6,8 e 0,06 3,4 0,8 b45196-h7685-+50 * 10 2) e 0,06 5,0 0,8 b45196-h7106-+50 * v r up to 85?c (up to 125?c) vdc c r m f case size tan d max (20?c, 120 hz) i lk, max (20?c, v r , 5 min) m a z max (20?c, 100 khz) w ordering code 1) tinned terminals b 45 196-h
siemens matsushita components 31 technical data and ordering codes for characteristic curves see page 37 / 38 ff v r up to 85?c (up to 125?c) vdc c r m f case size tan d max (20?c, 120 hz) i lk, max (20?c, v r , 5 min) m a z max (20?c, 100 khz) w ordering code 1) tinned teminals 4 (2,5) 3,3 a 0,045 0,5 5,9 b45196-p335-+10 * 4,7 a 0,045 0,5 4,6 b45196-p475-+10 * 6,8 a 0,045 0,5 3,9 b45196-p685-+10 * 10 b 0,045 0,5 2,7 b45196-p106-+20 * 15 b 0,045 0,6 2,6 b45196-p156-+20 * 22 c 0,045 0,9 1,7 b45196-p226-+30 * 33 c 0,045 1,3 1,5 b45196-p336-+30 * 47 c 0,045 1,9 1,1 b45196-p476-+30 * 68 d 0,045 2,7 0,8 b45196-p686-+40 * 100 d 0,06 4,0 0,6 b45196-p107-+40 * 150 d 0,06 6,0 0,6 b45196-p157-+40 * 6,3 (4) 2,2 a 0,045 0,5 6,5 b45196-p1225-+10 * 3,3 a 0,045 0,5 4,6 b45196-p1335-+10 * 4,7 a 0,045 0,5 3,6 b45196-p1475-+10 * 6,8 b 0,045 0,5 2,7 b45196-p1685-+20 * 10 b 0,045 0,6 2,1 b45196-p1106-+20 * 15 c 0,045 1,0 1,7 b45196-p1156-+30 * 22 c 0,045 1,4 1,3 b45196-p1226-+30 * 33 c 0,045 2,1 1,1 b45196-p1336-+30 * 47 c 0,045 3,0 0,8 b45196-p1476-+30 * 47 d 0,045 3,0 0,8 b45196-p1476-+40 * 68 d 0,045 4,3 0,6 b45196-p1686-+40 * 100 d 0,06 6,3 0,6 b45196-p1107-+40 * types b 45 196-p can be operated at temperatures up to 150 ?c. details for this operating condition must be agreed upon between supplier and customer. 1) replace 196 by 198 for gold-plated terminals + insert code letter for required capacitance tolerance: m = 20 %, k = 10 % (j = 5 % upon request) * insert code number for required reel diameter: 9 = 180 mm, 6 = 330 mm b 45 196-p
32 siemens matsushita components 10 (6,3) 1,5 a 0,045 0,5 6,5 b45196-p2155-+10 * 2,2 a 0,045 0,5 4,6 b45196-p2225-+10 * 3,3 a 0,045 0,5 3,6 b45196-p2335-+10 * 4,7 b 0,045 0,5 2,7 b45196-p2475-+20 * 6,8 b 0,045 0,7 2,1 b45196-p2685-+10 * 10 b 0,045 1,0 1,8 b45196-p2106-+20 * 10 c 0,045 1,0 1,7 b45196-p2106-+30 * 15 c 0,045 1,5 1,4 b45196-p2156-+30 * 22 c 0,045 2,2 1,1 b45196-p2226-+30 * 33 d 0,045 3,3 0,8 b45196-p2336-+40 * 47 d 0,045 4,7 0,6 b45196-p2476-+40 * 68 d 0,045 6,8 0,6 b45196-p2686-+40 * 100 d 0,06 10 0,6 b45196-p2107-+40 * 16 (10) 1,0 a 0,030 0,5 6,5 b45196-p3105-+10 * 1,5 a 0,045 0,5 5,2 b45196-p3155-+10 * 2,2 a 0,045 0,5 4,3 b45196-p3225-+10 * 3,3 b 0,045 0,6 3,0 b45196-p3335-+20 * 4,7 b 0,045 0,8 2,1 b45196-p3475-+20 * 6,8 c 0,045 1,1 1,7 b45196-p3685-+30 * 10 c 0,045 1,6 1,4 b45196-p3106-+30 * 15 c 0,045 2,4 1,1 b45196-p3156-+30 * 22 c 0,045 3,6 1,0 b45196-p3226-+30 * 22 d 0,045 3,6 0,8 b45196-p3226-+40 * 33 d 0,045 5,3 0,7 b45196-p3336-+40 * 47 d 0,045 7,5 0,6 b45196-p3476-+40 * types b 45 196-p can be operated at temperatures up to 150 ?c. details for this operating condition must be agreed upon between supplier and customer. v r up to 85?c (up to 125?c) vdc c r m f case size tan d max (20?c, 120 hz) i lk, max (20?c, v r , 5 min) m a z max (20?c, 100 khz) w ordering code 1) tinned teminals 1) replace 196 by 198 for gold-plated terminals + insert code letter for required capacitance tolerance: m = 20 %, k = 10 % (j = 5 % upon request) * insert code number for required reel diameter: 9 = 180 mm, 6 = 330 mm b 45 196-p
siemens matsushita components 33 20 (13) 0,68 a 0,030 0,5 7,8 b45196-p4684-+10 * 1,0 a 0,030 0,5 5,9 b45196-p4105-+10 * 1,5 a 0,045 0,5 5,2 b45196-p4155-+10 * 2,2 b 0,045 0,5 3,6 b45196-p4225-+20 * 3,3 b 0,045 0,7 2,7 b45196-p4335-+20 * 4,7 c 0,045 1,0 1,7 b45196-p4475-+30 * 6,8 c 0,045 1,4 1,3 b45196-p4685-+30 * 10 c 0,045 2,0 1,1 b45196-p4106-+30 * 15 d 0,045 3,0 0,9 b45196-p4156-+40 * 22 d 0,045 4,4 0,7 b45196-p4226-+40 * 33 d 0,045 6,6 0,6 b45196-p4336-+40 * 25 (16) 0,47 a 0,030 0,5 8,5 b45196-p5474-+10 * 0,68 a 0,030 0,5 6,5 b45196-p5684-+10 * 1,0 a 0,030 0,5 5,2 b45196-p5105-+10 * 1,5 b 0,045 0,5 4,2 b45196-p5155-+20 * 2,2 b 0,045 0,6 3,0 b45196-p5225-+20 * 3,3 c 0,045 0,9 2,0 b45196-p5335-+30 * 4,7 c 0,045 1,2 1,6 b45196-p5475-+30 * 6,8 c 0,045 1,7 1,4 b45196-p5685-+30 * 10 c 0,045 2,5 1,1 b45196-p5106-+30 * 10 d 0,045 2,5 0,9 b45196-p5106-+40 * 15 d 0,045 3,8 0,7 b45196-p5156-+40 * 22 d 0,045 5,5 0,6 b45196-p5226-+40 * types b 45 196-p can be operated at temperatures up to 150 ?c. details for this operating condition must be agreed upon between supplier and customer. v r up to 85?c (up to 125?c) vdc c r m f case size tan d max (20?c, 120 hz) i lk, max (20?c, v r , 5 min) m a z max (20?c, 100 khz) w ordering code 1) tinned teminals 1) replace 196 by 198 for gold-plated terminals + insert code letter for required capacitance tolerance: m = 20 %, k = 10 % (j = 5 % upon request) * insert code number for required reel diameter: 9 = 180 mm, 6 = 330 mm b 45 196-p
34 siemens matsushita components 35 (23) 0,10 a 0,030 0,5 28 b45196-p6104-+10 * 0,15 a 0,030 0,5 23 b45196-p6154-+10 * 0,22 a 0,030 0,5 15 b45196-p6224-+10 * 0,33 a 0,030 0,5 11 b45196-p6334-+10 * 0,47 b 0,030 0,5 8,0 b45196-p6474-+20 * 0,68 b 0,030 0,5 5,5 b45196-p6684-+20 * 1,0 b 0,030 0,5 4,4 b45196-p6105-+20 * 1,5 c 0,045 0,6 3,3 b45196-p6155-+30 * 2,2 c 0,045 0,8 2,2 b45196-p6225-+30 * 3,3 c 0,045 1,2 1,7 b45196-p6335-+30 * 4,7 d 0,045 1,7 1,0 b45196-p6475-+40 * 6,8 d 0,045 2,4 0,9 b45196-p6685-+40 * 10 d 0,045 3,5 0,7 b45196-p6106-+40 * 50 (33) 0,10 a 0,030 0,5 27 b45196-p7104-+10 * 0,15 b 0,030 0,5 22 b45196-p7154-+20 * 0,22 b 0,030 0,5 15 b45196-p7224-+20 * 0,33 b 0,030 0,5 11 b45196-p7334-+20 * 0,47 c 0,030 0,5 6,5 b45196-p7474-+30 * 0,68 c 0,030 0,5 5,5 b45196-p7684-+30 * 1,0 c 0,030 0,5 3,3 b45196-p7105-+30 * 1,5 d 0,045 0,8 2,8 b45196-p7155-+40 * 2,2 d 0,045 1,1 2,0 b45196-p7225-+40 * 3,3 d 0,045 1,7 1,1 b45196-p7335-+40 * 4,7 d 0,045 2,4 0,9 b45196-p7475-+40 * types b 45 196-p can be operated at temperatures up to 150 ?c. details for this operating condition must be agreed upon between supplier and customer. v r up to 85?c (up to 125?c) vdc c r m f case size tan d max (20?c, 120 hz) i lk, max (20?c, v r , 5 min) m a z max (20?c, 100 khz) w ordering code 1) tinned teminals 1) replace 196 by 198 for gold-plated terminals + insert code letter for required capacitance tolerance: m = 20 %, k = 10 % (j = 5 % upon request) * insert code number for required reel diameter: 9 = 180 mm, 6 = 330 mm b 45 196-p
siemens matsushita components 35 technical data and ordering codes for characteristic curves see page 37 / 40 ff v r up to 85?c (up to 125?c) vdc c r m f case size tan d max (20?c, 120 hz) i lk, max (20?c, v r , 5 min) m a esr max (20?c, 100 khz) m w i ac (20?c, 100 khz) a ordering code 1) tinned terminals 6,3 (4) 22 c 0,06 1,4 375 0,54 b45197-a1226-+30 * 33 c 0,06 2,1 350 0,56 b45197-a1336-+30 * 68 d 0,06 4,3 175 0,93 b45197-a1686-+40 * 100 d 0,08 6,3 125 1,10 b45197-a1107-+40 * 150 e 0,08 9,5 100 1,28 b45197-a1157-+50 * 220 e 0,08 13,9 100 1,28 b45197-a1227-+50 * 330 e 0,08 20,8 100 1,28 b45197-a1337-+50 * 10 (6,3) 15 c 0,06 1,5 400 0,52 b45197-a2156-+30 * 22 c 0,06 2,2 375 0,54 b45197-a2226-+30 * 47 d 0,06 4,7 200 0,87 b45197-a2476-+40 * 68 d 0,06 6,8 150 1,00 b45197-a2686-+40 * 100 d 0,08 10 100 1,22 b45197-a2107-+40 * 100 e 0,08 10 100 1,28 b45197-a2107-+50 * 150 e 0,08 15 100 1,28 b45197-a2157-+50 * 220 e 0,08 22 100 1,28 b45197-a2227-+50 * 330 e 0,08 33 100 1,28 b45197-a2337-+50 * 16 (10) 10 c 0,06 1,6 450 0,49 b45197-a3106-+30 * 15 c 0,06 2,4 400 0,52 b45197-a3156-+30 * 33 d 0,06 5,3 200 0,87 b45197-a3336-+40 * 47 d 0,06 7,5 175 0,93 b45197-a3476-+40 * 68 e 0,06 10,9 150 1,05 b45197-a3686-+50 * 100 e 0,08 16 100 1,28 b45197-a3107-+50 * 20 (13) 6,8 c 0,06 1,4 475 0,48 b45197-a4685-+30 * 10 c 0,06 2,0 450 0,49 b45197-a4106-+30 * 22 d 0,06 4,4 200 0,87 b45197-a4226-+40 * 33 d 0,06 6,6 200 0,87 b45197-a4336-+40 * 33 e 0,06 6,6 200 0,91 b45197-a4336-+50 * 47 e 0,06 9,4 150 1,05 b45197-a4476-+50 * 68 e 0,06 13,6 150 1,05 b45197-a4686-+50 * 1) replace 197-a by 198-r for gold-plated terminals + insert code letter for required capacitance tolerance: m = 20 %, k = 10 % (j = 5 % upon request) * insert code number for required reel diameter: 9 = 180 mm, 6 = 330 mm b 45 197-a
36 siemens matsushita components 25 (16) 4,7 c 0,06 1,2 525 0,46 b45197-a5475-+30 * 15 d 0,06 3,8 230 0,81 b45197-a5156-+40 * 22 d 0,06 5,5 230 0,81 b45197-a5226-+40 * 22 e 0,06 5,5 230 0,85 b45197-a5226-+50 * 33 e 0,06 8,3 200 0,91 b45197-a5336-+50 * 35 (23) 3,3 c 0,06 1,2 550 0,45 b45197-a6335-+30 * 4,7 d 0,06 1,6 300 0,71 b45197-a6475-+40 * 6,8 d 0,06 2,4 300 0,71 b45197-a6685-+40 * 6,8 e 0,06 2,4 300 0,74 b45197-a6685-+50 * 10 d 0,06 3,5 260 0,76 b45197-a6106-+40 * 10 e 0,06 3,5 260 0,80 b45197-a6106-+50 * 15 d 0,06 5,3 260 0,76 b45197-a6156-+40 * 15 e 0,06 5,3 260 0,80 b45197-a6156-+50 * 22 e 0,06 7,7 260 0,80 b45197-a6226-+50 * 50 (33) 4,7 d 0,06 2,4 300 0,71 b45197-a7475-+40 * 6,8 e 0,06 3,4 300 0,74 b45197-a7685-+50 * v r up to 85?c (up to 125?c) vdc c r m f case size tan d max (20?c, 120 hz) i lk, max (20?c, v r , 5 min) m a esr max (20?c, 100 khz) m w i ac (20?c, 100 khz) a ordering code 1) tinned terminals 1) replace 197-a by 198-r for gold-plated terminals + insert code letter for required capacitance tolerance: m = 20 %, k = 10 % (j = 5 % upon request) * insert code number for required reel diameter: 9 = 180 mm, 6 = 330 mm b 45 197-a
siemens matsushita components 37 impedance z and equivalent series resistance esr versus temperature t typical behavior case sizes a to e b 45 196, b 45 197 b 45 198
38 siemens matsushita components impedance z and equivalent series resistance esr versus frequency f typical behavior case size a case size b case size c case size d b 45 196 b 45 198
siemens matsushita components 39 impedance z and equivalent series resistance esr versus frequency f typical behavior case size e b 45 196 b 45 198
40 siemens matsushita components impedance z and equivalent series resistance esr versus frequency f typical behavior case size c case size d case size e b 45 197-a b 45 198-r
siemens matsushita components 41 permissible ripple current versus temperature t typical behavior permissible ripple current versus frequency f typical behavior b 45 197-a b 45 198-r
scs ?dependable, fast and competent ceramic chip capacitors from stock siemens matsushita components components + s m small in size, big in performance our selection of capacitors ranges from standard sizes down to a mini- ature highlight in 0402 style. mea- suring only 1 x 0.5 x 0.5 mm, its an ideal solution for applications where space is tight, like in handies and cardiac pacemakers. at the same time all our chips can boast excellent soldering characteristics, with special terminal variants for conductive ad- hesion. and we also thought about the right packing for automatic place- ment. you get all sizes down to 1206 in bulk case for example, plus voltage ratings from 16 to 500 v. by the way, our leaded models have cecc approval of course, in fact they were certified more than ten years ago. more in the new short form catalog!
siemens matsushita components 43 1 basic construction fig. 1 basic construction of a tantalum capacitor and calculation of capacitance fig. 2 mechanical construction anode body of sintered tantalum powder dielectric tantalum oxide, generated electrochemically by oxidation on the anode cathode semi-conducting metal oxide (manganese dioxide) deposited on the anodic oxide foil contacts to the cathode graphite and conducting silver layer that is applied on the semi-conducting coating and soldered or glued to the case or the terminals graphite semiconductor (e.g. mno 2 ) anode dielectric cathode c capacitance f e 0 absolute permittivity as/vm e r relative dielectric constant (27 for ta 2 o 5 ) a capacitor electrode surface area m 2 d electrode spacing m c e 0 e r a d --- - = marking ptfe washer anode wire positive terminal molded epoxy encapsulation negative terminal anode body tantalum pentoxide + mno 2 sintered tantalum powder general technical information
44 siemens matsushita components 2 polarity tantalum electrolytic capacitors are polar capacitors. the dielectric layers of polar electrolytic ca- pacitors are arranged so that the current is blocked only in one direction. it is important, therefore, to pay attention to the polarity marking (positive pole on anode, negative pole on cathode). reverse polarity is permitted only up to the values indicated on page 47 , otherwise the capacitor may be de- stroyed by the effects of the rapidly increasing current. fig. 3 current/voltage curve of a tantalum electrolytic capacitor (qualitative depiction only) 3 standards the tantalum electrolytic capacitors described in this data book are all designed for enhanced ser- vice requirements. the mechanical and electrical characteristics, together with the corresponding tests and test procedures, are set down in the appropriate standards. with regard to the technical content, the general iec, cecc and din standards are in line with each other. general standards for tantalum electrolytic capacitors iec 384-1 (identical with din iec 384, part 1, cecc30000 and din 45 910) generic specification: fixed capacitors for use in electronic equipment iec 384-3 (identical with din iec 384, part 3, cecc30800 and din 45 910 part 15) sectional specification: tantalum chip capacitors iec 384 - 3-1 (identical with din iec 384, part 3-1 and cecc30801) blank detail specification: tantalum chip capacitors i current v voltage v rev polarity reversal voltage v r rated voltage v s surge voltage v f forming voltage (determines the dielectric strength) general technical information
siemens matsushita components 45 4 voltages 4.1 rated voltage the rated voltage v r is the dc voltage indicated upon the capacitor. it determines the thickness of the dielectric. 4.2 maximum continuous voltage the maximum continuous voltage v cont is the maximum permissible voltage at which the capacitor can be continuously operated. it is a direct current voltage, or the sum of the basic dc voltage plus the peak value of the superimposed ac voltage ( cf. chapter 7 , on page 52 ). the maximum continuous voltage depends on the ambient temperature ( cf. figure 4 ). within the temperature range of - 55 to + 85 ?c, the rated voltage is equal to the maximum continuous voltage for tantalum electrolytic capacitors. in the temperature range between + 85 and + 125 ?c, the maximum continuous voltage must be reduced linearily from the rated voltage to 2 / 3 of the rated voltage. 85 ?c at v r and 125 ?c at 2 / 3 v r constitute approximately the same load for the capacitor. operation below the maximum continuous voltage has a positive effect on the capacitors service life. assignment of tantalum electrolytic capacitors produced by s + m components to existing detail specifications detail specification series cecc30801-801 b 45 196-e, b 45 196-p iec-qc300801/us0001 b 45 196-e, b 45 196-p cecc30801-802 b 45 196-h cecc30801-011 b 45 196-q (special version) cecc30801-805 b45197 general technical information
46 siemens matsushita components fig. 4 max. permissible continuous voltage (operating voltage) versus temperature 4.3 operating voltage the operating voltage v op is the voltage applied to the capacitor during continuous operation. it is not allowed to exceed the max. continuous voltage. all unfavorable operating conditions (e.g. possible line overvoltages, unfavorable tolerances of the transformation ratio of the line transformer in the equipment, repeated overvoltages upon switching equipment on, high ambient temperatures etc.) have to be taken into account when determining the operating voltage. 4.4 surge voltage the surge voltage v s is the maximum voltage (peak value) which may be applied to the capacitor for short periods, at the most 5 times for a duration of up to 1 minute per hour. the surge voltage must not be applied for periodic charging and discharging in the course of normal operation. the permissible surge voltage for all capacitors in this data book is 1,3 v r if voltage impulses (transient voltages) exceeding the surge voltage occur, this may lead to irrepa- rable damage. if applications of this kind are planned, please consult us first. general technical information
siemens matsushita components 47 4.5 polarity reversal voltage (incorrect polarity) any incorrect polarity resulting from the sum of the direct voltage and the alternating voltage com- ponents must be smaller than or equal to the permitted polarity reversal voltage (see table below). to avoid reducing the reliability, this voltage may only occur for a short time, at most five times for a duration of one minute per hour. permissible polarity reversal voltage for capacitors with a solid electrolyte: at 20 ?c: 0,15 . v r at 55 ?c: 0,10 . v r at 85 ?c: 0,05 . v r at 125 ?c: 0,03 . v r 4.6 series back-to-back connection for applications where higher polarity reversal voltages occur, two capacitors with identical rated voltage and identical rated capacitance can be connected back-to-back in series (e.g. cathode to cathode). in this way, blocking in each polarization direction is achieved. to avoid damage to the reversed polarity capacitors during charging, it is necessary to connect diodes in parallel to the ca- pacitors with the center of the diodes and the capacitors connected together. this non-polar or bi-polar version (which only has half the capacitance value as a result) can be operated at voltages of up to the rated direct voltage of any polarity or with double the superimposed alternating voltage of the value permitted for the individual capacitor. the capacitors connected back-to-back in this way can also be operated at a pure ac voltage. the surface temperature of the capacitor is not allowed to increase by more than max. 10 ?c , while the upper temperature limit should not be exceeded. 4.7 inherent voltage occasionally, inherent voltages can occur in electrolytic capacitors (due to element formation be- tween anode and cathode). since these inherent voltages are relatively low ( < 0,5 v), with accord- ingly high internal resistance (several 10 6 w ), they are of no importance for most applications. 4.8 recharging in all conventional capacitors a recharging effect may occur. this effect causes a charged capacitor to generate a recharging voltage that is of the same polarity as the charging voltage after external bridges are removed from the capacitors layers. the recharging voltage is more or less indepen- dent of the capacitance of the capacitors and the thickness of the dielectric and can be considered to be a characteristic property of the dielectric material. the value of the recharging voltage depends on various factors (type, charging time, discharging time, time of measurement, ambient temperature) and can attain an order of magnitude of 10 -2 up to several tenths of the operating voltage. of all electrolytic capacitors, capacitors with solid elec- trolytes have the lowest recharging effect. general technical information
48 siemens matsushita components 5 capacitance 5.1 rated capacitance the rated capacitance c r is the capacitance value by which the capacitor is identified. the actual capacitance of a capacitor can deviate from the rated capacitance by as much as the full magnitude of the tolerance at delivery. the capacitance of tantalum electrolytic capacitors is determined at a frequency of 120 hz and a temperature of 20 ?c as a series capacitance in an alternating current bridge circuit with measuring voltages < 0,5 v rms . 5.2 capacitance tolerance the capacitance tolerance (or tolerance at delivery) d c/c r is the maximum permitted deviation of the actual capacitance value from the specific rated capacitance. where the capacitance tolerances are to be indicated on the components themselves, s + m components uses code letters in accordance with iec 68. this code letter also forms part of the ordering code. 5.3 temperature dependence of the capacitance the capacitance of a tantalum electrolytic capacitor varies with the temperature (positive tempera- ture coefficient), cf. figure 5 . the amount by which it varies depends on the voltage and capacitance value. low voltages and high capacitance values cause greater variations than high voltages and low capacitance values. fig. 5 capacitance change versus temperature (typical values) general technical information
siemens matsushita components 49 5.4 frequency dependence of the capacitance the capacitance decreases with increasing frequency. a typical curve is shown in figure 6 . fig. 6 capacitance change versus frequency (typical behavior), reference temperature 20 ?c typical values of the effective capacitance can be derived from the impedance curve, as long as the impedance is still in the range where the capacitive component dominates. c capacitance f f frequency hz z impedance w 5.5 charge-discharge proof tantalum electrolytic capacitors produced by s + m components are charge-discharge proof. this means that the capacitance reduction after 10 8 charge-discharge cycles will be less than 3 %. - 55 ?c + 85 ?c + 125 ?c maximum values for chip capacitors - 10 % + 10 % + 12 % c 1 2 p fz -------------------------- - = general technical information
50 siemens matsushita components 6 impedance / equivalent series resistance ( esr ) the impedance can also be described as the absolute value of the ac resistance. the impedance of tantalum electrolytic capacitors is represented in close approximation by a series circuit comprising the following individual resistance components: 1. effective reactance 1/ w c of the capacitance c 2. dielectric losses and the ohmic resistance of the electrolyte and/or the semiconductor layer (equivalent series resistance esr ) 3. effective reactance w l of the inductance of the electrodes and the terminals. fig. 7 simplified equivalent circuit diagram of a tantalum electrolytic capacitor the frequency and temperature relationship of these components determine the impedance char- acteristics. esr includes both r dielect + r elyt : r dielect represents the dielectric losses and decreases with 1/ w . r elyte represents the series resistance of the electrolyte and does not vary with frequency. r dielect is negligible at frequencies above approximately 10 khz. in the higher and lower frequency ranges, the frequency characteristic of the impedance is mainly caused by both the reactances. the temperature characteristic is mainly determined by the resis- tance of the electrolyte. because of the corrosion-resistance of tantalum, highly conductive electrolytes can be used for tan- talum electrolytic capacitors, so that these capacitors have low series resistances. a particularly high conductivity is achieved by the solid semiconductor layer used instead of a liquid electrolyte. hence capacitors with solid electrolytes have the lowest series resistance of all electrolytic capaci- tors. the conductivity of the electrolyte varies only slightly, even at low temperatures. this means that the impedance of tantalum electrolyte capacitors displays favorable frequency and temperature characteristics. the following figures show the typical behavior of the impedance in relationship to frequency and temperature. the decrease in impedance at low frequencies down to a few khz is determined by the capacitive reactance, whereas the following, almost horizontal course of the curve mainly shows the ohmic series resistance. beyond the natural resonant frequency, the inductive reactance becomes in- creasingly predominant, so that the curves finally merge into straight lines. general technical information
siemens matsushita components 51 fig. 8 impedance z versus frequency f capacitor 6,8 m f/35 vdc fig. 9 impedance z versus temperature t general technical information
52 siemens matsushita components 7 ac power dissipation 7.1 superimposed alternating voltage for capacitors with solid electrolyte the superimposed alternating voltage is the r.m.s. alternating voltage that may be applied to a capacitor in addition to a direct voltage. the sum of the direct voltage and the peak value of the superimposed alternating voltage must not exceed the maximum continuous voltage. the superimposed alternating voltage must be limited in such a way that no unpermitted incorrect polarity occurs (permissible incorrect polarity, cf. chapter 4.5 ). the alternating current flowing through the capacitor or the alternating voltage applied may not exceed a maximum value determined for the respective type and rated capacitance, since the capacitor might be damaged due to overheating or its service life may be reduced. the value of the permitted alternating voltage and/or the superimposed alternating current depends on the equivalent series resistance ( esr ) and the permissible power dissipation. here, the permitted inherent heating for the respective type is taken into consideration. the basis for the calculations are as follows: p = i 2 . esr , with i = we obtain p power dissipation w i effective ripple current a v effective alternating voltage vac z impedance w esr equivalent series resistance w 7.2 maximum permissible ripple current and alternating voltage loads using p max from the following tables, the maximum permissible ripple current and alternating volt- age loads can be calculated. v z ---- p v 2 esr z 2 ------------------------- = i max p max esr ------------- = v max z p max esr ------------- = general technical information
siemens matsushita components 53 7.2.1 maximum permissible power dissipation with ripple current load reduction of the calculated values versus the ambient temperature, cf. figure 10 . fig. 10 permissible ripple current i ac and permissible alternating voltage v ac versus temperature t case size z pabcde p v max in mw 28 55 75 85 110 150 165 general technical information
54 siemens matsushita components 8 dissipation factor the dissipation factor tan d increases with frequency and tends to very high values at near- resonance frequencies. the figures below show the typical frequency and temperature behavior of the dissipation factor. fig. 11 dissipation factor versus temperature at f = 120 hz fig. 12 dissipation factor versus frequency at t = 20 ?c t general technical information
siemens matsushita components 55 9 leakage current when a direct voltage is applied to electrolytic capacitors, a low, constant current will flow through any capacitor. this so-called leakage current i lk is a function of the voltage as well as of the temperature. (graphs are shown in chapter 9.1 ). the value of the leakage current of an electrolytic capacitor is determined, above all, by the impurities (atoms of foreign substances that cannot be formed) in the carrier metal (anode). the use of high-pu- rity tantalum powder results in a low fault density in the dielectric and thus in a low leakage current. 9.1 temperature and voltage dependence of the leakage current fig. 13 leakage current versus voltage fig. 14 leakage current versus temperature general technical information
56 siemens matsushita components 9.2 time dependence of the leakage current as can be seen from figure 15 , the leakage current is high when the voltage is first applied (inrush current). this decreases rapidly, however, in the course of operation and finally achieves an almost constant steady-state value. fig. 15 leakage current versus time for which a voltage is applied 9.3 leakage current measurement the leakage current is measured at 20 ?c, after the rated voltage has been applied to the capacitors for five minutes. a stabilized power supply is required and a series resistor of 1000 w should be connected in order to limit the charging current. before the voltage is applied, the capacitors must be stabilized at the rated temperature for 30 minutes. for tantalum capacitors with solid electrolyte, the following limit value at 20 ?c is required by the applicable standards: the following temperature factors apply at 85 ?c: 10 at 125 ?c: 12,5 inrush current steady-state leakage current leakage current (linear) time i lk 0,01 m a c r m f ------- - v r v ------- - ? ?? , minimum 0,5 m a. general technical information
siemens matsushita components 57 9.4 leakage current behavior after storage without applied voltage tantalum and its oxide are extremely resistant to chemical influences and are only attacked by very aggressive chemicals. they possess a high resistance to commonly used electrolytes and there is no deterioration of the oxide layer. storage without an applied voltage at room temperature has no effect on the leakage current and only a slight effect at increased storage temperatures. this means that tantalum electrolytic capac- itors can be stored for at least 10 years without requiring subsequent regeneration. 10 resistance to climatic stress both for reasons of reliability and due to the fact that the electrical parameters vary with tempera- ture, limits must be set for the climatic conditions to which tantalum capacitors are subjected. the most important climatic factors are the permissible minimum and maximum temperatures and humidity conditions. the values for these three factors are coded as iec climatic categories ( cf. chapter 10.5 ). the iec category applicable to each type is given in the corresponding data sheet. 10.1 temperature range the temperature range of a capacitor is the range between the lower and upper category temper- atures within which the capacitor may be operated in accordance with its climatic category. the temperature range for tantalum electrolytic capacitors lies between - 55 and + 125 ?c. within the - 55 to + 85 ?c range, the maximum continuous voltage v cont may be equal to the rated voltage v r , provided that no other limiting conditions are specified. from 85 ?c upwards, voltage reductions should be made ( cf. chapter 4.2 ). 10.2 minimum permissible operating temperature t min (lower category temperature) the lower category temperature results from the capacitance decrease permitted for each individ- ual capacitor type or from the increase in impedance due to the reduced conductivity of the electro- lyte or the semiconductor layer. temperatures down to the lower category temperature do not affect the service life. 10.3 maximum permissible operating temperature t max (upper category temperature ) the upper category temperature is the maximum permissible ambient temperature at which a capacitor may be continuously operated at the stated permissible electrical load. if this limit is exceeded, the capacitor may fail prematurely. it is possible to exceed the upper category tempera- ture for short periods. however, since the permissible period depends on the electrical load, it is essential to consult s + m components before implementing such applications. 10.4 damp heat conditions the permissible damp heat conditions for tantalum electrolytic capacitors are specified by the climatic categories in accordance with iec 68-1 and are proved by tests in accordance with iec 68-2-3. general technical information
58 siemens matsushita components 10.5 iec climatic category the permissible climatic stress on a capacitor is given by the respective iec climatic category. according to iec 68-1, the climatic category comprises 3 groups of numbers, separated by slashes. example: 55/125/56 1st group: lower category temperature (temperature limit) denoting the test temperature for test a (cold) in accordance with iec 68-2-1. 2nd group: upper category temperature (temperature limit) denoting the test temperature for test b (dry heat) in accordance with iec 68-2-2. 3rd group: number of days, the duration of test ca (damp heat, steady state) at a relative humidity of 93 +2/-3 % and an ambient temperature of 40 ?c, in accordance with iec 68-2-3. 10.6 storage and transportation temperatures tantalum capacitors with solid electrolyte may be stored at temperatures down to - 80 ?c. the upper storage temperature may not exceed the rated temperature range. 11 notes on mounting for soldering tests, refer to the chapters measuring and test conditions and soldering condi- tions . these chapters also include layout recommendations and soldering temperature profiles. 11.1 cleaning agents the cleaning agents normally used nowadays for cleaning printed circuit boards after components have been soldered in can also be used, without restrictions, for tantalum electrolytic capacitors. four-chamber ultrasonic cleaning processes with short individual stages and adequate subsequent drying provide good protection against damage. 12 standard barcode label the standard product package label provides barcode information as well as the usual text infor- mation. this provides advantages in the internal goods flow, but above all, it allows fast and accu- rate identity monitoring by the customer. due to our systematically constructed, unique marking on the packages, each component can be traced back to a certain production lot. this, in turn allows monitoring of the entire production pro- cedure right back to the purchasing of raw materials. the information includes the type, ordering code, quantity, date of manufacture, storage number, lot number and, where applicable, customer number. the barcode used is code 39 (medium density). general technical information
siemens matsushita components 59 example: 13 packing when packing our products, naturally we pay attention to the needs of the environment. this means that: C only environmentally compatible materials are used for packing, and C the amount of packing is kept to an absolute minimum. in observing these rules, we are also complying to german packaging legislation. in order to further comply to the aims of this legislation concerning the reduction of commercial waste, we have implemented the following measures: C standardized euro pallets are used. C goods are secured on pallets using straps and edge protectors made of environmentally com- patible plastics (pe or pp). no stretch or shrink-wrap foils are used. C shipping cartons (transport packaging) qualify for and carry the resy logo. C separating layers between pallets and cartons are of a single material type, preferably paper or cardboard. C styrofoam (expanded polystyrene foam) chips are used as filler and padding materials. these can be re-used. they are expanded to a foam without using cfcs and halogens. C the shipping cartons are sealed with paper adhesive tape in order to ensure that only a single, uniform material needs to be disposed of. C we are prepared, in principle, to take back the packing material (especially product-specific pla- stic packages). however, we ask our customers to send cardboard cartons, corrugated card- board, paper etc. to recycling or disposal companies in order to avoid unnecessary transporta- tion of empty packing materials. general technical information
60 siemens matsushita components 14 end of use and disposal all tantalum electrolytic capacitors produced by s + m components are free of substances listed in german chemicals and cfc halogen prohibitive regulations. nor do they contain any chemical sub- stances of groups i through viii of the montreal clean air agreement or mentioned in ec regulation 3093/94. tantalum electrolytic capacitors are not categorized as waste materials requiring special supervi- sion in recycling and waste disposal regulations. consequently they may be left in electronic equip- ment and on circuit boards without any declaration or restriction and collected by an authorized dis- posal and recycling agency for electronic waste. customers outside germany are requested to observe the disposal regulations which apply in their respective country. 15 structure of the ordering code (part number) all technical products produced by our company are identified by a part number (which is identical to the ordering code). this number is a unique identifier for any respective specific component that can be supplied by us. the customer can speed up and facilitate processing of his order by quoting the part number. all components are supplied in accordance with the part numbers ordered. the structure of the ordering code is explained in the data sheet section ( pages 12 and 18 ). general technical information
siemens matsushita components 61 1 general the high demands made of us by the world market for product and service quality make a compre- hensive, thorough and up-to-date quality management system indispensable. the qm system introduced in capacitors division was certified to en iso 9001 in june 1992. numerous customer audits and awards are evidence of its efficiency and effectiveness. the qm system has been further developed and refined in line with the requirements of standards (en iso 9000 ff, cecc) and efqm criteria. the next objective is certification to qs 9000 and vda 6.1. quality assurance
62 siemens matsushita components 1.1 total quality management and zero defect concept the strategic aim of total quality management (tqm) is to satisfy the demands made by customers on products or services in terms of function, quality, punctuality and price/performance. based on the principle quality from the very start, all instances and persons at s+m components are involved in implementing this aim. systematic planning, careful selection of suppliers and sure mastery of design and manufacturing processes are the major guarantees of a constantly high qual- ity standard. internal quality promotion measures, such as training, quality groups, quality assurance circles and q audits strengthen the feeling of responsibility in all employees, helping them to realize the signif- icance of defects and thus avoid them. modern quality tools such as fmea, spc and zero-defect programs with cedac 1) diagrams supplement and support measures for quality assurance and enhancement. 1) fmea failure mode and effects analyses spc statistical process control cedac cause and effect diagram with addition of cards quality assurance
siemens matsushita components 63 1.2 quality assurance system quality assurance measures in the creation of the product global tasks quality assurance system product planning quality cost assessment acquisi- tion develop- ment procure- ment production inspection testing storage dispatch product applications quality planning documentation quality reporting quality promotion international and national standards and regulations pertaining to quality assurance and qa systems according to: iso iec cecc din and others. special quality demands made by customers in-house rules and guidelines on quality assurance quality principles quality policy quality policy of the business division quality manuals procedural guidelines in-house quality promotion measures basic and further training, q lectures q promotion programs quality group activities q circles experience interchange q audits quality assurance
64 siemens matsushita components 2 quality assurance procedure the quality department examines capacitors and releases them for production according to the following criteria: C compliance with type specifications C process capability of equipment C measuring and test technique. the entire production process C from procurement of parts and materials, through the fabrication process to final inspection C is accompanied by quality assurance measures. the flow chart (cf. 2.5 ) shows the quality inspections stipulated for each individual step. 2.1 material procurement the high quality of parts and materials required in the manufacture of high-grade products is achieved through close co-operation with suppliers. focal aspects of these quality assurance mea- sures are the choice and qualification of suppliers, harmonization of specifications, incoming-goods inspection, quality assessment and problem management. 2.2 product quality assurance all essential manufacturing processes are subjected to permanent monitoring. critical parameters, in particular, are subjected to statistical process control (spc). so-called qc gates are planned into the manufacturing process, i.e. there is an inspection for re- lease at the end of the corresponding step. the continuous monitoring and evaluation of the test results are used to assess procedures and to determine how well the processes are mastered. 2.3 final inspection the capacitors are subjected to a specification-based final inspection. the parameters capacitance tolerance, dissipation factor / equivalent series resistance, impedance, leakage current and proper- ties (i.e. mechanical finish) are checked. 2.4 product monitoring our quality assurance department periodically carries out tests on random samples taken from cur- rent production lots to check climatic resistance, operational reliability, solderability and resistance to soldering heat in accordance with din, cecc and iec specifications. quality assurance
siemens matsushita components 65 2.5 manufacturing and quality assurance procedures for chip capacitors manufacture quality assurance incoming goods pressing and sintering of anode cv product grouping welding of anode to metal bar forming, tempering, pyrolysis graphite and silver coating mounting on lead frame molding, deflashing marking, burn-in 100 % tests of properties and electrical parameters sampling for conformance inspection, taping with test of c and tan d , packing warehouse, dispatch quality gate quality gate quality gate quality gate quality gate inspection of raw materials and parts check of weight, length (spc), vacuum temperature specific charge, leakage current check of identity, test equipment, test results sampling to specification, clearance (spc), peel force release for delivery, identity check check of process parameters, properties, solderability check of welding strength (spc), properties check of immersion depth, density, viscosity check of capacity, density, properties check of welding accuracy (spc), properties final inspection assembly prefabrication quality assurance
66 siemens matsushita components 3 delivery quality the term delivery quality is used to indicate conformance with the mutually agreed specifications at the time of delivery. this conformance is monitored and guaranteed by quality assurance through constant sampling tests. their accumulated results produce the aoq (average outgoing quality) figures. 3.1 random sampling the aql (aql = acceptable quality level) figures given in section 3.3 are based on random sample inspection specification iso 2859-1 single sampling plan for normal inspection, inspection level ii. the contents of this standard correspond to mil std105 d and iec 410. the sampling instructions of this standard are such that a delivered lot will be accepted with a prob- ability of 3 90 % if the percentage of non-conformancies does not exceed the stated aql figure. as a rule, the percentage of non-conformancies in deliveries from s+m components is significantly below the aql figure. the acceptance figure we apply to inoperatives, i.e. unusable components is c =0. 3.2 classification of inoperatives / non-conformancies a non-conformancy exists if a component characteristic fails to meet the data sheet specifications or an agreed delivery specification. inoperatives are totally unusable components. inoperatives: C short circuit or open circuit C breakage of terminals or encapsulation C wrong or missing marking C wrong marking of terminals C mixing with other components C alternating orientation in one tape non-conformancies: C non-conformancies in electrical characteristics (electrical characteristics outside of specified limits) C non-conformancies in mechanical properties (e.g. wrong dimensions, damaged case, illegible marking, bent terminals). 3.3 aql figures the following aql figures apply to the non-conformancies listed above: C inoperatives (electrical and mechanical) 0,065 C sum of electrical non-conformancies 0,25 C sum of mechanical non-conformancies 0,25 3.4 incoming goods inspection we recommend the use of a random sampling plan according to iso 2859-1 (the contents corre- spond to mil std 105 d and iec 410) for incoming goods inspection. the test methods to be used are laid down in the relevant standards. deviations must be agreed by the customer and the supplier. in case of complaints refer to section 7 . quality assurance
siemens matsushita components 67 single sampling plan for normal inspection C inspection level ll excerpt from iso 2859C1: columns 2 to 5: left-hand figure = sample size right-hand figure = acceptable inoperatives/non-conformancies classification of inoperatives/non-conformancies: cf. paragraph 3.2 constant improvement of our performance is a primary objective, especially optimization of product quality in close cooperation between producer and user. for this purpose we offer our customers the possibility of quality assurance agreeements. 4 service life the service life is defined as the time that passes before a given failure percentage is attained for the respective component. the failure percentage is the ratio of the number of failures to the total number of inspected capacitors of the respective type. the service life depends on the defect crite- ria applied and on the operating conditions, i.e. on the electrical and thermal stress to which the ca- pacitor is subjected. the service life values stated in this data book have been established by carrying out endurance tests and accelerated tests (e.g. increased temperature). they refer to an ambient temperature of 40 ?c, rated voltage and a circuit resistance of 3 3 w /v. the service life increases: C with decreasing ambient temperatures, C with decreasing superimposed ac voltage, C with decreasing operating voltage/rated voltage ratios C with increasing circuit resistance ( cf. paragraphs 5.3 , 5.4 ) C with decreasing operating temperature ( cf. paragraph 5.3 and figure 2 ) aql 0,065 sampling plan n = lot size aql 0,10 aql 0,15 aql 0,25 2 50 n-0 n-0 n-0 n-0 51 90 n-0 n-0 n or 80-0 50-0 91 150 n-0 n or 125-0 80-0 50-0 151 280 n or 200-0 125-0 80-0 50-0 281 500 200-0 125-0 80-0 50-0 501 1 200 200-0 125-0 80-0 50-0 1 201 3 200 200-0 125-0 80-0 200-1 3 201 10 000 200-0 125-0 315-1 200-1 10 001 35 000 200-0 500-1 315-1 315-2 quality assurance
68 siemens matsushita components 4.1 failure criteria inoperatives: short-circuit or open circuit failure due to variation, i.e. unsatisfactory electrical characteristics: C i > 5 . i lk + 5 m a C z > 3 times the initial limit value C tan d> 1,5 times the initial limit value 5 reliability data on long-term reliability under severe or moderate operating conditions are gained from endur- ance tests which are carried out continuously. the data are based on the failures registered for ca- pacitors under a defined load, and long-term reliability of the individual types tested is based on a confidence level of 60%. our reliability data result from very large numbers of component operating hours. 5.1 failure rate (long-term failure rate) the failure rate is defined as the failure percentage divided by a specified operating period. the failure rate is expressed in fit (failures in 10 9 component hours) or as percentage of failures in 1000 hours. 1 fit = 1 . 10 -9 /h ( fit = f ailure i n t ime) example of a failure rate l test determined by a useful life test: 1) number of components tested n = 8 000 2) operating hours t b = 25 000 h 3) number of failures n = 2 failure rate specifications must include failure criteria, operating conditions and ambient conditions. C d c for v 16 v: + 10 C 20 % C for v > 16 v: + 10 C 10 % beyond (initial) tolerances l test n n --- - 1 t b ---- 2 8000 ------------ - 1 25000h ------------------- - 10 fit 0,001 %/1000 h. == = = quality assurance
siemens matsushita components 69 usually the failure rate of components, when plotted against time, shows a characteristic curve with the following two periods: i : early failure period, ll: service period fig. 1 failure rate periods due to the 100 % burn-in tests, the early failure period (phase l) will coincide with the manufacturing process. because of this, the failure rate relates to the service period (phase ii). in phase ii, an almost constant failure rate l 0 can be expected, with a slight tendency to decrease with time. 5.2 failure rate values the failure rate (specified on page 19 ) refers to the following conditions. electrical load: operation at rated voltage circuit resistance 3 3 w /v climatic conditions: ambient temperature 40 ?c, climatic class 3k3 in accordance with iec 721, non-corrosive atmosphere mechanical stress: class 3m3 in accordance with iec 721 service period: phase ii as shown in figure 1 . period in which failure rate is constant early failure period quality assurance
70 siemens matsushita components these reference conditions do not always correspond to actual application conditions. for real ap- plications, the failure rate must therefore be calculated as follows: l ref failure rate under reference conditions p v factor for voltage dependence p t factor for temperature dependence p rs factor for dependence on circuit resistance 5.3 failure rate conversion factors the failure percentage and failure rate are affected by the ambient temperature, the v op / v r ratio, and, for capacitors with solid electrolyte, by the circuit resistance. these values increase with incre- asing ambient temperatures, and they are decreased by lowering the v op / v r ratio and increasing the circuit resistance. conversion factors for taking into account the effects of ambient temperature and operating voltage on the failure rate within the service life can be deduced from the table below or from the graph in figure 2 (guideline values). v op / v r 0,2 0,4 0,5 0,6 0,8 1 p v 3,5 10 -4 2,4 10 -3 6,5 10 -3 1,7 10 -2 0,13 1 t / c20 40 60 85 105 125 p t 0,5 1 2,2 10 49 250 circuit resistance w /v 3 3 1 0,3 0,1 p rs c r v r / m c 330 1 2 3,5 5 > 330 1 2,8 6,1 12 ll ref p v p t p rs = quality assurance
siemens matsushita components 71 . fig. 2 conversion factors for the failure rate 5.4 effect of the circuit resistance (series resistance) on the failure rate of tantalum electrolytic capacitors with solid electrolytes the employment of a certain series resistance is not a necessary condition for problem-free use of tantalum capacitors with solid electrolyte. however, it is possible to influence the service life by the series resistance value. the failure rates specified in this book are based on circuits containing a series resistance (circuit resistance). in addition to the temperature and applied voltage, the series resistance too has an ef- fect on the failure rate. the circuit resistance is defined as the total resistance as seen from the ca- pacitor in the direction of the voltage source. it is the sum of the internal resistance of the voltage source, the wiring resistance and any additional resistors connected in series. the circuit resistance is only of importance when there are localized dielectric breakdowns in the capacitor due to overloads. in such cases the circuit resistance limits the current and permits a self- healing of the capacitor. tantalum capacitors with solid electrolyte have the ability to regenerate and heal internal defects. the self-healing effect can only be successful if the breakdown occurs in a small area and if the energy dissipation in that area is limited while regeneration is taking place. if these conditions are not given, localized overheating may occur, leading to an expansion of the defect area and thus ren- dering regeneration impossible. while this self-healing process is taking place, the circuit resistance keeps the energy supply to a tolerable level, since the highly conductive solid electrolyte can take over this function only to a certain extent. thus the circuit resistance has a decisive effect on the self-healing process and, as a result, on the failure rate. the respective cecc standards contain corresponding information and data. v r v op conversion factor quality assurance
72 siemens matsushita components a current limit of approximately 300 ma (for limiting the energy dissipation) has been found to be suitable for enabling an effective self-healing process. this corresponds to a circuit resistance of 3 w /v. if the circuit resistance is lower, thus impairing the conditions for self-healing in the case of localized dielectric breakdown, then the failure rate increases, as expressed by the larger factors. in extreme cases, i.e. where the resistance approaches zero ( 0,1 w /v), the failure rate may in- crease to factor of approximately ten, depending on the case size. 5.5 example of how to calculate the failure rate given: ambient temperature t a = 60 ?c operating voltage v op = 25 vdc circuit resistance r s 0,1 w /v capacitor used (e. g. b 45 196-e): c r = 1 m f v r = 50 vdc failure rate = 3 fit under reference conditions. for and t a = 60 ?c, a conversion factor of approximately 0,015 is deduced from figure 2 on page 71 . the same value is obtained from the table on page 70 by multiplying p v p t . for a circuit resistance of 0,1 w /v and c r v r / m c 330 the table gives a conversion factor of 5. calculated failure rate: l = 3 . 10 C9 failures/h . 0,015 . 5 = 0,23 . 10 C9 failures/h = 0,23 fit. 5.6 failure rate for b 45 194 as already explained, the failure rate varies with the operating conditions (ambient temperature, ap- plied voltage, circuit resistance, application circuits etc.). select the capacitors to obtain an ade- quate safety margin by fully examining the operating conditions. the failure rate of b 45194 capacitors is given as percentage in 1000 hours and refers to rated volt- age applied at 85 c. check the design objective with the following formula for the failure rate: l op predicted failure rate at operating conditions l 85oc failure rate level at rated voltage and 85 c: 1%/1000 h k t multiplying factor of failure rate as a function of maximum temperature and , see figure 3 k sr multiplying factor of failure rate as a function of cicuit resistance ( w /v), see figure 4 v op v r --------- - 05 , = l op l 85oc k t k sr = v op v r --------- - quality assurance
siemens matsushita components 73 always consider safety when designing equipment and circuits. plan for worst case failure modes such as short circuits and open circuits which could occur during use. C provide protection circuits and protection devices to allow safe failure modes. C design redundant and secondary circuits where possible to assure continued operation in case of main circuit failure. 6 supplementary information the specification of quality data C which always refer to a fairly large number of components C does not constitute a guarantee of characteristics or properties in the legal sense. however, agreement on these specifications does not mean that the customer may not claim for replacement of individual defective capacitors within the terms of delivery. s + m components cannot, however, assume any further liability beyond the replacement of defective components. this applies in particular to any further consequences of component failure. furthermore, it must be taken into consideration that the figures stated for service life and failure rate refer to the average production status and are therefore to be understood as mean values (sta- tistical expectations) for a large number of delivery lots of identical capacitors. these figures are based on application experience and on data obtained from preceding tests under normal con- ditions, or C for purposes of accelerated aging C more severe conditions. fig. 3 multiplying factor of failure rate versus temperature and voltage fig. 4 multiplying factor of failure rate versus circuit resistance quality assurance
74 siemens matsushita components 7 handling of claims and complaints a main aim of our quality assurance system is to prevent any faults occurring. the following details will help us to respond quickly to any complaints which you may need to make: a) non-conformancies (inoperatives) in incoming goods C description of non-conformancy C test method / circuit C sample size C number of non-conforming units found C proof unit C packing slip b) non-conformancies (inoperatives) in production or operation C description of non-conformancy C when and how was the non-conformancy detected C operating conditions C length of operation before non-conformancy occured C details as under a) if possible and applicable. if transport damage has occurred, please describe it in detail and, if possible, mark it so that it can be distinguished from any other damage that may occur when the articles are returned. the original packing should also be examined and damage discovered should be described. to avoid further damage, please use the original packing, wherever possible, to return the articles being claimed for. quality assurance
siemens matsushita components 75 1 test conditions selected from iec 60-384-1 2 tests with more stringent conditions than specified by cecc and iecq for b 45 196-p measuring and test conditions only apply to b 45 194 if explicitly stated. please contact your nearest siemens office for passive components if you need further information. endurance 2000 h at +85 ?c or 2000 h at +125 ?c at reduced voltage l d c / c l 10 % of initial value tan d limit value (in part 1,5 . limit value) i lk20?c 1,25 . initial limit value (in part 2 . limit value) of 25 tested capacitors, only one, at the most, may exceed the specified values. storage at high temperature without voltage applied 5000 h at +85 ?c l d c / c l 10 % of initial value tan d 1,5 . limit value i lk20?c limit value damp heat, steady state *) in accordance with iec 68-2-3 *) increased test severity for chip capacitors b 45 196-p, see below severity 4: 40 ( 2) ?c; 93 (+2/-3) % relative humidity; duration: 56 days l d c / c l 5 % of initial value tan d 1,2 . limit value i lk20?c initial limit value vibration test fc in accordance with iec 68-2-6 frequency range: 10 ? 2000 hz amplitude: 1,5 mm (max. 196 m/s 2 i.e. 20 g ) test duration: 6 h shock test ea in accordance with iec 68-2-27 peak load : 981 m/s 2 i.e. 100 g damp heat, steady state parameter changes: 85 (+2) ?c, 85 ? 90 % relative humidity, 1000 h, at rated voltage l d c / c l 10 % of initial value tan d 2 . initial limit value i lk20?c 10 . initial limit value rapid change of temperature 100 cycles, - 55 ?c/+125 ?c/30 min l d c / c l 3 % of initial value tan d initial limit value i lk20?c initial limit value measuring and test conditions !
76 siemens matsushita components 1 tests wetting in accordance with iec 68-2-58 preconditioning: immersion in f-sw 31 flux assessment criterion: wetting of terminals 3 95 % (except for cutting and bending edges) resistance to soldering heat in accordance with iec 68-2-58 preconditioning: immersion in f-sw 32 flux assessment criterion l d c / c l 3 % of initial value tan d initial limit value i lk20?c initial limit value resistance to soldering heat of b 45 194 solder bath temperature immersion time snpb 60/40 235 ( 5) ?c 2 ( 0,2) s snpb 60/40 215 ( 3) ?c 3 ( 0,3) s solder bath temperature immersion time snpb 60/40 260 ( 5) ?c 10 ( 0,5) s solder bath temperature immersion time snpb 60/40 260 ( 5) ?c 5 ( 1) s soldering conditions
siemens matsushita components 77 2 recommended solder pad layouts case size soldering process dimensions (mm) rst u z wave soldering reflow soldering 1,2 1,2 1,1 0,8 1,0 1,0 3,2 2,6 p wave soldering reflow soldering 1,6 1,6 2,6 1,5 1,3 1,3 6,5 4,3 a wave soldering reflow soldering 1,6 1,5 1,9 1,5 1,2 0,8 5,0 3,8 b wave soldering reflow soldering 2,7 2,5 2,0 1,5 1,5 1,1 5,5 4,1 c wave soldering reflow soldering 2,7 2,5 2,8 2,0 3,0 2,6 8,6 6,6 d wave soldering reflow soldering 2,9 2,7 2,9 2,0 4,4 3,9 10,2 7,9 e wave soldering reflow soldering 2,9 2,7 2,9 2,0 4,4 3,9 10,2 7,9 soldering conditions
78 siemens matsushita components 3 recommended soldering temperature profiles for chip capacitors (in accordance with cecc 00802 edition 2) vapor phase soldering chamber (batch) process with preheating. temperature at component terminal applies conveyor (continuous) process with preheating. temperature at component terminal applies temperature limit curves external preheating internal preheating (by secondary vapor) accelerated cooling normal curve time 20 to 40 s temperature 20 to 40 s limit curves external preheating 100?c forced cooling internal preheating e.g. infrared max. 2 k/s time normal curve soldering conditions
siemens matsushita components 79 wave soldering temperature curve at component terminal during dual wave soldering infrared reflow soldering temperature curve at component terminal in infrared soldering forced cooling time normal curve temperature 235 ?c to 260 ?c first wave approx. 200 k/s 100 ?c to 130 ?c second wave limit curves temperature approx. approx.40s normal curve time limit curves soldering conditions
80 siemens matsushita components 4 recommended soldering temperature profiles for b 45 194 wave soldering the components are fixed to the board with adhesive, and are directly dipped into the solder bath. l when component mounting density is high, solderability may be decreased. take notice to drain gas. l preheat for 2 minutes at 160 c. cool after soldering soldering conditions
siemens matsushita components 81 reflow soldering temperature rising part i ordinary temperature to preheating part preheating part a temperature rising part ii preheating part to 200 c ? main heating part refer to figure on next page ? cooling part 200 to 100 c the components and the board are heated by an hot blast oven or an infrared radiation oven. l measure temperature at the component surface. l do not perform reflow more than twice. please consult supplier for vapor phase soldering conditions. time at 200 c or more (main heating part) soldering conditions
scs ?dependable, fast and competent applications with a future we set your ideas in motion when it comes to implementing ideas, you couldn? choose a better partner. our flexibility turns standard products into new ones with all the right features. whether capacitors and converter filters for wind-driven power plants, ferrite antennas for radio wrist-watches or saw filters for the new wide- screen tv generation. if you?e got the application, we?e got the component. siemens matsushita components components + s m
siemens matsushita components 83 1 taping chip capacitors are taped and reeled in accordance with iec 286-3. sizes z, p, a and b are sup- plied in 8-mm blister tapes, sizes c, d and e in 12-mm blister tapes. the tapes and reels are anti- static. the position of the positive pole is shown in the outline drawing below. tape dimensions and tolerances 1) 0,2 mm over 10 sprocket hole spaces dimensions (mm) case size zpabcde a 1 0,2 1,35 1,9 1,9 3,3 3,7 4,7 4,7 b 1 0,2 2,2 3,5 3,5 3,8 6,5 7,7 7,7 d 0 + 0,1/ - 0 d 1 min. p 0 0,1 1) p 1 0,1 p 2 0,05 1,5 1,0 4,0 4,0 2,0 1,5 1,0 4,0 4,0 2,0 1,5 1,0 4,0 4,0 2,0 1,5 1,0 4,0 4,0 2,0 1,5 1,5 4,0 8,0 2,0 1,5 1,5 4,0 8,0 2,0 1,5 1,5 4,0 8,0 2,0 w 0,3 e 0,1 f 0,05 g min. 8,0 1,75 3,5 0,75 8,0 1,75 3,5 0,75 8,0 1,75 3,5 0,75 8,0 1,75 3,5 0,75 12,0 1,75 5,5 0,75 12,0 1,75 5,5 0,75 12,0 1,75 5,5 0,75 t 1 0,05 t 2 max. k 0 0,1 0,25 1,9 1,5 0,25 1,9 1,5 0,25 2,3 1,9 0,25 2,6 2,2 0,3 3,3 3,0 0,3 3,6 3,3 0,3 4,8 4,5 kta0065-c direction of unreeling section a-a taping, packing and weights
84 siemens matsushita components 2 packing 3 packing units and weights 1) guideline values, possible deviations of up to approximately 30 % dimensions (mm) reel 180 mm diameter 330 mm diameter a 180 0,5 330 0,5 b c d e 62,5 C 2,5 13,0 0,5 22,0 1,0 2,0 0,5 62 , 0 1,5 12,75 + 0,15/ - 0 21,0 0,5 2,0 + 0,5/ - 0 w 1 (8-mm tape) (12-mm tape) 8,4 + 0,2/ - 0 12,4 + 0,2/ - 0 w 2 (8-mm tape) (12-mm tape) 11,0 0,1 15,0 0,1 8,4 + 0,2/ - 0 12,4 + 0,2/ - 0 case size taped; pieces/reel approx. weight per capacitor 180 mm diameter 330 mm diameter g 1) z 3000 0, 008 p 3000 0,02 a 2000 9000 0,06 b 2000 8000 0,09 c 750 3000 0,20 d 750 2800 0,35 e 400 1800 0,50 taping, packing and weights
scs ?dependable, fast and competent now twice as many siemens matsushita components components + s m 2,000 ptc thermistors at once a hot tip in ptcs for overload protection: our new maximum order level of 2,000 pieces. and with more than 50 different models, we?e got a lot more to offer too. maximum operating voltages from 12 to 550 v, rated currents up to 2.5 a, maximum switching currents of 15 a, plus a broad selection of lea- ded versions and smds.
86 siemens matsushita components a ac power dissipation 52 anode 43 aql figures 66 b back-to-back circuit 47 basic construction 43 c capacitance 48 frequency dependence 49 temperature dependence 48 capacitance tolerance 48 category temperature 57 cathode 43 cedac diagram 62 charge-discharge proof 49 circuit resistance 71 claims and complaints 74 cleaning agents 58 d damp heat 75 damp heat conditions 57 delivery quality 66 dielectric 43 disposal of old capacitors 60 dissipation factor 54 e en iso 9001 61 end of use 60 endurance 75 equivalent circuit diagram 50 equivalent series resistance 50 f failure criteria 68 failure percentage 67 failure rate 68 calculation examples 72 conversion factors 70 values 69 final inspection 64 fit 68 fmea 62 i iec climatic category 58 impedance 50 incoming goods inspection 66 incorrect polarity 47 inherent voltage 47 inoperatives 66 iso 9000 61 l leakage current 55 after storage 57 measurement of ... 56 temperature dependence 55 time dependence 56 voltage dependence 55 m material procurement 64 maximum continuous voltage 45 maximum ripple current 52 mounting 58 n non-conformancies 66 o operating voltage 46 ordering code 60 p packing 59 , 84 packing units 84 part number 60 polarity 44 polarity reversal voltage 47 power dissipation 53 product monitoring 64 product quality assurance 64 subject index
siemens matsushita components 87 q quality assurance 61 quality assurance procedure 64 quality assurance procedures chip capacitors 65 quality assurance system 63 quality data 73 r random sampling 66 rated capacitance 48 rated voltage 45 recharging 47 reliability 68 resistance to climatic stress 57 s series back-to-back connection 47 series resistance 71 service life 67 shock 75 solder pad layouts 77 soldering tests 76 spc 62 standard barcode label 58 standards 44 statistical process control 64 storage and transportation temperatures 58 storage test 75 superimposed alternating voltage 52 surge voltage 46 t taping 83 temperature coefficient, positive 48 temperature range 57 tolerance at delivery 48 total quality management 62 transient voltages 46 v vibration 75 voltages 45 w weights 84 z zero defects concept 62 subject index
88 siemens matsushita components symbol english german c capacitance kapazit?t c r rated capacitance nennkapazit?t d c capacitance change kapazit?ts?nderung d c / d c r capacitance tolerance kapazit?tstoleranz c s series capacitance serienkapazit?t c f capacitance at frequency f kapazit?t bei frequenz f esl self-inductance eigeninduktivit?t esr equivalent series resistance ersatz-serienwiderstand esr t equivalent series resistance at temperature t ersatz-serienwiderstand bei temperatur t f frequency frequenz i current strom iac alternating current wechselstrom i f alternating current at frequency f wechselstrom bei frequenz f i lk leakage current reststrom p power dissipation verlustleistung r s series resistance (circuit resistance) serienwiderstand (schaltkreiswiderstand) t temperature temperatur t max upper category temperature obere grenztemperatur (kategorietemperatur) t min lower category temperature untere grenztemperatur (kategorietemperatur) t a ambient temperature umgebungstemperatur t time zeit t op operating time betriebszeit v voltage spannung vac ac voltage wechselspannung v cont max. continuous voltage dauergrenzspannung v f forming voltage formierspannung v op operating voltage betriebsspannung v r rated voltage nennspannung v rev reverse voltage umpolspannung v s surge voltage spitzenspannung z impedance scheinwiderstand z t impedance at temperature t scheinwiderstand bei temperatur t tan d dissipation factor verlustfaktor tan d t dissipation factor at temperature t verlustfaktor bei temperatur t tan d f dissipation factor at frequency f verlustfaktor bei frequenz f symbols and terms
siemens matsushita components 89 l failure rate (1 fit = 1 . 10 C9 failures/h) ausfallrate (1 fit = 1 . 10 C9 ausf?lle/h) factors for failure rate calculation: faktoren zur berechnung der ausfallrate: p v factor for voltage dependence faktor fr spannungsabh?ngigkeit p t factor for temperature dependence factor fr temperaturabh?ngigkeit p rs factor for dependence on circuit resistance faktor fr abh?ngigkeit vom schaltkreis- widerstand decimal points are indicated by commas. symbol english german symbols and terms


▲Up To Search▲   

 
Price & Availability of B45196-P2685-M0106

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X